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A lgorithmic bias is often described as a thorny technical
problem. Machine-learning models can respond to

almost any pattern—including ones that re!ect
discrimination. Their designers can explicitly prevent such
tools from consuming certain types of information, such as
race or sex. Nonetheless, the use of related variables, like
someone’s address, can still cause models to perpetuate
disadvantage.

Ironing out all traces of bias is a daunting task. Yet despite the
growing attention paid to this problem, some of the lowest-
hanging fruit remains unpicked.

Every good model relies on training data that re!ect what it
seeks to predict. This can sometimes be a full population,
such as everyone convicted of a given crime. But modellers
often have to settle for non-random samples. For uses like
facial recognition, models need enough cases from each
demographic group to learn how to identify members
accurately. And when making forecasts, like trying to predict
successful hires from recorded job interviews, the
proportions of each group in training data should resemble
those in the population.
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Many businesses compile private training data. However, the
two largest public image archives, Google Open Images and
ImageNet—which together have 725,000 pictures labelled by
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sex, and 27,000 that also record skin colour—are far from
representative. In these collections, drawn from search
engines and image-hosting sites, just 30-40% of photos are of
women. Only 5% of skin colours are listed as “dark”.

Sex and race also sharply a"ect how people are depicted. Men
are unusually likely to appear as skilled workers, whereas
images of women disproportionately contain swimwear or
undergarments. Machine-learning models regurgitate such
patterns. One study trained an image-generation algorithm
on ImageNet, and found that it completed pictures of young
women’s faces with low-cut tops or bikinis.

Similarly, images with light skin often displayed
professionals, such as cardiologists. Those with dark skin had
higher shares of rappers, lower-class jobs like
“washerwoman” and even generic “strangers”. Thanks to the
Obamas, “president” and “#rst lady” were also
overrepresented.

ImageNet is developing a tool to rebalance the demography of
its photos. And private #rms may use less biased archives.
However, commercial products do show signs of skewed data.
One study of three programs that identify sex in photos found
far more errors for dark-skinned women than for light-
skinned men.

Making image or video data more representative would not
#x imbalances that re!ect real-world gaps, such as the high
number of dark-skinned basketball players. But for people
trying to clear passport control, avoid police stops based on
security cameras or break into industries run by white men,
correcting exaggerated demographic disparities would surely
help.7

Sources: ImageNet; Google Open Images; IPUMS

This article appeared in the Graphic detail section of the print edition under the
headline "Bias in, bias out"
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